Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Gene ; 920: 148521, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703868

RESUMEN

Long noncoding RNAs (lncRNAs) are regulatory RNAs. Saccharomyces cerevisiae strains transcribe hundreds of lncRNAs. LncRNAs can regulate the expression of adjacent genes (cis-regulation) or distant genes from lncRNAs (trans-regulation). Here, we analyzed the potential global cis and trans-regulation of lncRNAs of yeast subjected to ethanol stress. For potential cis regulation, for BMA641-A and S288C strains, we observed that most lncRNA-neighbor gene pairs increased the expression at a certain point followed by a decrease, and vice versa. Based on the transcriptome profile and triple helix prediction between lncRNAs and promoters of coding genes, we observed nine different ways of potential trans regulation that work in a strain-specific manner. Our data provide an initial landscape of potential cis and trans regulation in yeast, which seems to be strain-specific.

2.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732336

RESUMEN

BACKGROUND: The polymerase chain reaction of upper respiratory tract swab samples was established as the gold standard procedure for diagnosing SARS-CoV-2 during the COVID pandemic. However, saliva collection has attracted attention as an alternative diagnostic collection method. The goal of this study was to compare the use of saliva and nasopharyngeal swab (NPS) samples for the detection of SARS-CoV-2. METHODS: Ninety-nine paired samples were evaluated for the detection of SARS-CoV-2 by saliva and swab for a qualitative diagnosis and quantitative comparison of viral particles. Furthermore, the detection limits for each sample collection technique were determined. The cycle threshold (CT) values of the saliva samples, the vaccination status, and the financial costs associated with each collection technique were compared. RESULTS: The results showed qualitative equivalence in diagnosis (96.96%) comparing saliva and swab collection, although there was low quantitative agreement. Furthermore, the detection limit test demonstrated equivalence for both collection methods. We did not observe a statistically significant association between CT values and vaccination status, indicating that the vaccine had no influence on viral load at diagnosis. Finally, we observed that the use of saliva incurs lower financial costs and requires less use of plastic materials, making it more sustainable. CONCLUSIONS: These findings support the adoption of saliva collection as a feasible and sustainable alternative to the diagnosis of COVID-19.

3.
Circ Res ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.

4.
Genetics ; 227(1)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38513121

RESUMEN

B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.


Asunto(s)
ARN , Animales , ARN/genética , Cromosomas/genética , Filogenia , Humanos
5.
Sci Rep ; 14(1): 5023, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424101

RESUMEN

Understanding temperature-sensitivity of R gene-mediated resistance against apoplastic pathogens is important for sustainable food production in the face of global warming. Here, we show that resistance of Brassica napus cotyledons against Leptosphaeria maculans was temperature-sensitive in introgression line Topas-Rlm7 but temperature-resilient in Topas-Rlm4. A set of 1,646 host genes was differentially expressed in Topas-Rlm4 and Topas-Rlm7 in response to temperature. Amongst these were three WAKL10 genes, including BnaA07g20220D, representing the temperature-sensitive Rlm7-1 allele and Rlm4. Network analysis identified a WAKL10 protein interaction cluster specifically for Topas-Rlm7 at 25 °C. Diffusion analysis of the Topas-Rlm4 network identified WRKY22 as a putative regulatory target of the ESCRT-III complex-associated protein VPS60.1, which belongs to the WAKL10 protein interaction community. Combined enrichment analysis of gene ontology terms considering gene expression and network data linked vesicle-mediated transport to defence. Thus, dysregulation of effector-triggered defence in Topas-Rlm7 disrupts vesicle-associated resistance against the apoplastic pathogen L. maculans.


Asunto(s)
Brassica napus , Mapas de Interacción de Proteínas , Temperatura , Genes prv , Proteínas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética
6.
Mol Cell Endocrinol ; 580: 112102, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37972683

RESUMEN

AIMS: The developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. Using a model of maternal exposure to a low protein diet (LPD; 6% protein) during the gestational and lactational periods, we demonstrated changes in the ventral prostate (VP) transcriptomic landscape in young rats exposed to maternal malnutrition. Male offspring Sprague Dawley rats were submitted to maternal malnutrition during gestation and lactation, and they were weighed, and distance anogenital was measured, followed were euthanized by an overdose of anesthesia at 21 postnatal days. Next, the blood and the ventral prostate (VP) were collected and processed by morphological analysis, biochemical and molecular analyses. RNA-seq analysis identified 411 differentially expressed genes (DEGs) in the VP of maternally malnourished offspring compared to the control group. The molecular pathways enriched by these DEGs are related to cellular development, differentiation, and tissue morphogenesis, all of them involved in both normal prostate development and carcinogenesis. Abcg1 was commonly deregulated in young and old maternally malnourished offspring rats, as well in rodent models of prostate cancer (PCa) and in PCa patients. Our results described ABCG1 as a potential DOHaD gene associated with perturbation of prostate developmental biology with long-lasting effects on carcinogenesis in old offspring rats. A better understanding of these mechanisms may help with the discussion of preventive strategies against early life origins of non-communicable chronic diseases.


Asunto(s)
Desnutrición , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Masculino , Ratas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Lactancia , Desnutrición/complicaciones , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Próstata/metabolismo , Ratas Sprague-Dawley
8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982719

RESUMEN

Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.


Asunto(s)
ARN Largo no Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Largo no Codificante/genética , Etanol/farmacología , Etanol/metabolismo
9.
PLoS Comput Biol ; 18(5): e1010081, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587936

RESUMEN

Ethanol alters many subsystems of Saccharomyces cerevisiae, including the cell cycle. Two ethanol-responsive lncRNAs in yeast interact with cell cycle proteins, and here, we investigated the role of these RNAs in cell cycle. Our network dynamic modeling showed that higher and lower ethanol-tolerant strains undergo cell cycle arrest in mitosis and G1 phases, respectively, during ethanol stress. The higher population rebound of the lower ethanol-tolerant phenotype after stress relief responds to the late phase arrest. We found that the lncRNA lnc9136 of SEY6210 (a lower ethanol-tolerant strain) induces cells to skip mitosis arrest. Simulating an overexpression of lnc9136 and analyzing CRISPR-Cas9 mutants lacking this lncRNA suggest that lnc9136 induces a regular cell cycle even under ethanol stress, indirectly regulating Swe1p and Clb1/2 by binding to Gin4p and Hsl1p. Notably, lnc10883 of BY4742 (a higher ethanol-tolerant strain) does not prevent G1 arrest in this strain under ethanol stress. However, lnc19883 circumvents DNA and spindle damage checkpoints, maintaining a functional cell cycle by interacting with Mec1p or Bub1p even in the presence of DNA/spindle damage. Overall, we present the first evidence of direct roles for lncRNAs in regulating yeast cell cycle proteins, the dynamics of this system in different ethanol-tolerant phenotypes, and a new yeast cell cycle model.


Asunto(s)
ARN Largo no Codificante , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Etanol/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Sci Rep ; 11(1): 24209, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930908

RESUMEN

Gene regulatory networks (GRNs) play key roles in development, phenotype plasticity, and evolution. Although graph theory has been used to explore GRNs, associations amongst topological features, transcription factors (TFs), and systems essentiality are poorly understood. Here we sought the relationship amongst the main GRN topological features that influence the control of essential and specific subsystems. We found that the Knn, page rank, and degree are the most relevant GRN features: the ones are conserved along the evolution and are also relevant in pluripotent cells. Interestingly, life-essential subsystems are governed mainly by TFs with intermediary Knn and high page rank or degree, whereas specialized subsystems are mainly regulated by TFs with low Knn. Hence, we suggest that the high probability of TFs be toured by a random signal, and the high probability of the signal propagation to target genes ensures the life-essential subsystems' robustness. Gene/genome duplication is the main evolutionary process to rise Knn as the most relevant feature. Herein, we shed light on unexplored topological GRN features to assess how they are related to subsystems and how the duplications shaped the regulatory systems along the evolution. The classification model generated can be found here: https://github.com/ivanrwolf/NoC/ .

13.
Mol Genet Genomics ; 296(2): 289-298, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33252723

RESUMEN

The lack of consensus concerning the biological meaning of entropy and complexity of genomes and the different ways to assess these data hamper conclusions concerning what are the causes of genomic entropy variation among species. This study aims to evaluate the entropy and complexity of genomic sequences of several species without using homologies to assess relationships among these variables and non-molecular data (e.g., the number of individuals) to seek a trigger of interspecific genomic entropy variation. The results indicate a relationship among genomic entropy, genome size, genomic complexity, and the number of individuals: species with a small number of individuals harbors large genome, and hence, low entropy but a higher complexity. We defined that the complexity of a genome relies on the entropy of each DNA segment within genome. Then, the entropy and complexity of a genome reflects its organization solely. Exons of vertebrates harbor smaller entropies than non-exon regions (likely by the repeats that accumulated from duplications), whereas other taxonomic groups do not present this pattern. Our findings suggest that small initial population might have defined current genomic entropy and complexity: actual genomes are less complex than ancestral ones. Besides, our data disagree with the relationship between phenotype and genomic entropies previously established. Finally, by establishing the relationship between genomic entropy/complexity with the number of individuals and genome size, under an evolutive perspective, ideas concerning the genomic variability may emerge.


Asunto(s)
Variación Genética , Análisis de Secuencia de ADN/métodos , Vertebrados/crecimiento & desarrollo , Animales , Entropía , Evolución Molecular , Genoma , Humanos , Modelos Genéticos
14.
Plant Genome ; 13(3): e20043, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33217216

RESUMEN

Most of the bioinformatics tools for enzyme annotation focus on enzymatic function assignments. Sequence similarity to well-characterized enzymes is often used for functional annotation and to assign metabolic pathways. However, these approaches are not feasible for all sequences leading to inaccurate annotations or lack of metabolic pathway information. Here we present the mApLe (metabolic pathway predictor of plant enzymes), a high-performance machine learning-based tool with models to label the metabolic pathway of enzymes rather than specifying enzymes' reactions. The mApLe uses molecular descriptors of the enzyme sequences to perform predictions without considering sequence similarities with reference sequences. Hence, mApLe can classify a diversity of enzymes, even the ones without any homolog or with incomplete EC numbers. This tool can be used to improve the quality of genomic annotation of plants or to narrow down the number of candidate genes for metabolic engineering researches. The mApLe tool is available online, and the GUI can be locally installed.


Asunto(s)
Biología Computacional , Redes y Vías Metabólicas , Genoma , Genómica , Aprendizaje Automático
15.
Microorganisms ; 8(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932752

RESUMEN

Hepatitis B virus (HBV) is an enveloped virus that induces chronic liver disease. HBV has been classified into eight genotypes (A-H) according to its genome sequence by using Sanger sequencing or reverse hybridization. Sanger sequencing is often restricted to analyzing the S gene and is inaccurate for detecting minority genetic variants, whereas reverse hybridization detects only known mutations. Next-generation sequencing (NGS) is a robust tool for clinical virology with different protocols available. The objective of this study was to develop a new method for the study of viral genetic polymorphisms or more accurate genotyping using genome amplification followed by NGS. Plasma obtained from five chronically infected HBV individuals was used for viral DNA isolation. HBV full-genome PCR amplification was the enrichment method for NGS. Primers were used to amplify all HBV genotypes in three overlapping amplicons, following a tagmentation step and Illumina NGS. For phylogenetic analysis, sequences were extracted from the HBVdb database. We were able to amplify a full HBV genome; further, NGS was shown to be a robust method and allowed better genotyping, mainly in patients carrying mixed genotypes, classified according to other techniques. This new method may be significant for whole genome analyses, including other viruses.

16.
BMC Genomics ; 21(1): 656, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967626

RESUMEN

BACKGROUND: One of the biggest challenges in chromosome biology is to understand the occurrence and complex genetics of the extra, non-essential karyotype elements, commonly known as supernumerary or B chromosomes (Bs). The non-Mendelian inheritance and non-pairing abilities of B chromosomes make them an interesting model for genomics studies, thus bringing to bear different questions about their genetic composition, evolutionary survival, maintenance and functional role inside the cell. This study uncovers these phenomena in multiple species that we considered as representative organisms of both vertebrate and invertebrate models for B chromosome analysis. RESULTS: We sequenced the genomes of three animal species including two fishes Astyanax mexicanus and Astyanax correntinus, and a grasshopper Abracris flavolineata, each with and without Bs, and identified their B-localized genes and repeat contents. We detected unique sequences occurring exclusively on Bs and discovered various evolutionary patterns of genomic rearrangements associated to Bs. In situ hybridization and quantitative polymerase chain reactions further validated our genomic approach confirming detection of sequences on Bs. The functional annotation of B sequences showed that the B chromosome comprises regions of gene fragments, novel genes, and intact genes, which encode a diverse set of functions related to important biological processes such as metabolism, morphogenesis, reproduction, transposition, recombination, cell cycle and chromosomes functions which might be important for their evolutionary success. CONCLUSIONS: This study reveals the genomic structure, composition and function of Bs, which provide new insights for theories of B chromosome evolution. The selfish behavior of Bs seems to be favored by gained genes/sequences.


Asunto(s)
Cromosomas/genética , Evolución Molecular , Reordenamiento Génico , Animales , Characidae/genética , Saltamontes/genética
17.
PLoS Negl Trop Dis ; 14(1): e0007949, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961876

RESUMEN

Leishmaniasis is caused by intracellular parasites transmitted to vertebrates by sandfly bites. Clinical manifestations include cutaneous, mucosal or visceral involvement depending upon the host immune response and the parasite species. To assure their survival inside macrophages, these parasites developed a plethora of highly successful strategies to manipulate various immune system pathways. Considering that inflammasome activation is critical for the establishment of a protective immune response in many parasite infections, in this study we determined the transcriptome of THP-1 cells after infection with L. infantum, with a particular focus on the inflammasome components. To this end, the human cell line THP-1, previously differentiated into macrophages by PMA treatment, was infected with L. infantum promastigotes. Differentiated THP-1 cells were also stimulated with LPS to be used as a comparative parameter. The gene expression signature was determined 8 hours after by RNA-seq technique. Infected or uninfected THP-1 cells were stimulated with nigericin (NIG) to measure active caspase-1 and TNF-α, IL-6 and IL-1ß levels in culture supernatants after 8, 24 and 48 hours. L. infantum triggered a gene expression pattern more similar to non-infected THP-1 cells and very distinct from LPS-stimulated cells. Some of the most up-regulated genes in L. infantum-infected cells were CDC20, CSF1, RPS6KA1, CD36, DUSP2, DUSP5, DUSP7 and TNFAIP3. Some up-regulated GO terms in infected cells included cell coagulation, regulation of MAPK cascade, response to peptide hormone stimulus, negative regulation of transcription from RNA polymerase II promoter and nerve growth factor receptor signaling pathway. Infection was not able to induce the expression of genes associated with the inflammasome signaling pathway. This finding was confirmed by the absence of caspase-1 activation and IL-1ß production after 8, 24 and 48 hours of infection. Our results indicate that L. infantum was unable to activate the inflammasomes during the initial interaction with THP-1 cells.


Asunto(s)
Inflamasomas/inmunología , Leishmania infantum/fisiología , Leishmaniasis/genética , Monocitos/inmunología , Monocitos/parasitología , Caspasa 1/genética , Caspasa 1/inmunología , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/inmunología , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Células THP-1 , Transcriptoma , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
18.
Virus Res ; 274: 197778, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31618615

RESUMEN

NS3 is an important therapeutic target for direct-acting antiviral (DAA) drugs. However, many patients treated with DAAs have unsustained virologic response (UVR) due to the high mutation rate of HCV. The aim of this work was to shed some light on the puzzling molecular mechanisms of the virus's of patients who showed high viral loads even under treatment with DAA. Bioinformatics tools, molecular modelling analyses were employed to identify mutations associated with HCV resistance to boceprevir and possible structural features related to this phenomenon. We identified two mutations of NS3 that may be associated with HCV resistance: D168N and L153I. The substitution D168N was previously reported in the literature as related with drug failure. Additionally, we identified that its molecular resistance mechanism can be explained by the destabilization of receptor-ligand hydrogen bonds. For the L153I mutation, the resistance mechanism is different from previous models reported in the literature. The L153I substitution decreases the S139 deprotonation susceptibility, and consequently, this mutation impairs the covalent binding between the residue S139 from NS3 and the electrophilic trap on boceprevir, which can induce drug failure. These results were supported by the time course analysis of the mutations of the NS3 protease, which showed that boceprevir was designed for enzymes with an L residue at position 153; however, the sequences with I153 are predominant nowadays. The results presented here could be used to infer about resistance in others DAA, mainly protease inhibitors.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Antivirales/química , Farmacorresistencia Viral/efectos de los fármacos , Hepatitis C Crónica/virología , Humanos , Modelos Moleculares , Mutación , Prolina/análogos & derivados , Prolina/química , Prolina/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/química
19.
Chromosoma ; 128(4): 547-560, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31456013

RESUMEN

Sex chromosome differentiation is subject to independent evolutionary processes among different lineages. The accumulation of repetitive DNAs and consequent crossing-over restriction guide the origin of the heteromorphic sex chromosome region. Several Neotropical fish species have emerged as interesting models for understanding evolution and genome diversity, although knowledge of their genomes is scarce. Here, we investigate the content of repetitive DNAs between males and females of Apareiodon sp. based on large-scale genomic data focusing on W sex chromosome differentiation. In Apareiodon, females are the heterogametic sex (ZW) and males are the homogametic sex (ZZ). The genome size estimate for Apareiodon was 1.2 Gb (with ~ 42× and ~ 47× coverage for males and females, respectively). In Apareiodon sp., approximately 36% of the genome was composed of repetitive DNAs and transposable elements (TEs) were the most abundant class. Read coverage analysis revealed different amounts of repetitive DNAs in males and females. The female-enriched clusters were located on the W sex chromosome and were mostly composed of microsatellite expansions and DNA transposons. Landscape analysis of TE contents demonstrated two major waves of invasions of TEs in the Apareiodon genome. Estimation of TE insertion times correlated with in situ locations permitted the inference that helitron, Tc1-mariner, and CMC EnSpm DNA transposons accumulated repeated copies during W chromosome differentiation between 20 and 12 million years ago. DNA transposons and microsatellite expansions appeared to be major players in W chromosome differentiation and to guide modifications in the genome content of the heteromorphic sex chromosomes.


Asunto(s)
Characiformes/genética , Elementos Transponibles de ADN , Evolución Molecular , Repeticiones de Microsatélite , Cromosomas Sexuales , Animales , Femenino , Genoma , Genómica , Masculino , Análisis de Secuencia de ADN
20.
Chromosoma ; 128(2): 81-96, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31115663

RESUMEN

Supernumerary B chromosomes (Bs) are accessory elements to the regular chromosome set (As) and have been observed in a huge diversity of eukaryotic species. Although extensively investigated, the biological significance of Bs remains enigmatic. Here, we present de novo genome assemblies for the cichlid fish Astatotilapia latifasciata, a well-known model to study Bs. High coverage data with Illumina sequencing was obtained for males and females with 0B (B-), 1B, and 2B (B+) chromosomes to provide information regarding the diversity among these genomes. The draft assemblies comprised 771 Mb for the B- genome and 781 Mb for the B+ genome. Comparative analysis of the B+ and B- assemblies reveals syntenic discontinuity, duplicated blocks and several insertions, deletions, and inversions indicative of rearrangements in the B+ genome. Hundreds of transposable elements and 1546 protein coding sequences were annotated in the duplicated B+ regions. Our work contributes a list of thousands of genes harbored on the B chromosome, with functions in several biological processes, including the cell cycle.


Asunto(s)
Cromosomas/genética , Cíclidos/genética , Polimorfismo Genético , Animales , Mapeo Cromosómico , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Genoma , Genómica , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...